Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Hortic Res ; 11(1): uhad252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269295

RESUMEN

The genetic and epigenetic mechanisms underlying the coexistence and coordination of the four diverged subgenomes (ABCD) in octoploid strawberries (Fragaria × ananassa) remains poorly understood. In this study, we have assembled a haplotype-phased gap-free octoploid genome for the strawberry, which allowed us to uncover the sequence, structure, and epigenetic divergences among the subgenomes. The diploid progenitors of the octoploid strawberry, apart from subgenome A (Fragaria vesca), have been a subject of public controversy. Phylogenomic analyses revealed a close relationship between diploid species Fragaria iinumae and subgenomes B, C, and D. Subgenome A, closely related to F. vesca, retains the highest number of genes, exhibits the lowest content of transposable elements (TEs), experiences the strongest purifying selection, shows the lowest DNA methylation levels, and displays the highest expression level compared to the other three subgenomes. Transcriptome and DNA methylome analyses revealed that subgenome A-biased genes were enriched in fruit development biological processes. In contrast, although subgenomes B, C, and D contain equivalent amounts of repetitive sequences, they exhibit diverged methylation levels, particularly for TEs located near genes. Taken together, our findings provide valuable insights into the evolutionary patterns of subgenome structure, divergence and epigenetic dynamics in octoploid strawberries, which could be utilized in strawberry genetics and breeding research.

2.
PLoS Pathog ; 19(12): e1011894, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150467

RESUMEN

The protein-coding ability of circRNAs has recently been a hot topic, but the role of protein-coding circRNAs in antiviral innate immunity of teleost fish has rarely been reported. Here, we identified a novel circRNA, termed circMORC3, derived from Microrchidia 3 (MORC3) gene in Miichthys miiuy. circMORC3 can inhibit the expression of antiviral cytokines. In addition, circMORC3 encodes a novel peptide with a length of 84 amino acids termed MORC3-84aa. MORC3-84aa not only significantly inhibited TRIF-mediated activation of IRF3 and NF-κB signaling pathways, but also effectively suppressed the expression of antiviral cytokines triggered by RNA virus Siniperca chuatsi rhabdovirus (SCRV). We found that MORC3-84aa directly interacted with TRIF and negatively regulated TRIF protein expression. In addition, host gene MORC3 attenuates SCRV-induced IFN and ISG expression. Mechanistically, MORC3-84aa promotes autophagic degradation of TRIF by enhancing K6-linked ubiquitination and inhibits TRIF-mediated activation of the type I interferon signaling pathway. And the host gene MORC3 not only repressed IRF3 protein expression but also inhibited IRF3 phosphorylation levels. Our study shows that circMORC3 and host gene MORC3 played a synergistic role in viral immune escape.


Asunto(s)
ARN Circular , Rhabdoviridae , Animales , Transducción de Señal , FN-kappa B/metabolismo , Inmunidad Innata/genética , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Citocinas , Peces , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
3.
J Virol ; 97(11): e0088623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37843373

RESUMEN

IMPORTANCE: The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.


Asunto(s)
Proteínas de Peces , ARN Circular , Proteínas de Transporte Vesicular , Virosis , Animales , Proteínas de Peces/genética , Peces/inmunología , Peces/virología , Inmunidad Innata , ARN Circular/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/veterinaria , Virosis/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/virología
4.
Br J Anaesth ; 131(6): 1022-1029, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37833128

RESUMEN

The potential neurotoxic impact of anaesthetic agents has been the subject of sustained debate and continuing research. White matter, which comprises more than half of the brain volume and largely consists of myelinated axonal bundles, is critical for communication between diverse brain regions and for supporting neurobehavioural function. Evidence points to a correlation between exposure to anaesthesia and white matter alterations, which might underpin the ensuing cognitive and behavioural abnormalities. This review summarises the neuropathological and neuroimaging findings related to anaesthesia-induced white matter alterations in the developing brain. Future research is required to understand the effects of anaesthesia exposure on white matter development.


Asunto(s)
Enfermedades del Sistema Nervioso , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Encéfalo/patología , Anestesia General , Neuroimagen
5.
Org Biomol Chem ; 21(31): 6424, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493463

RESUMEN

Retraction of 'Deoxygenative cross-electrophile coupling of benzyl chloroformates with aryl iodides' by Yingying Pan et al., Org. Biomol. Chem., 2019, 17, 4230-4233, https://doi.org/10.1039/C9OB00628A.

6.
Allergol Immunopathol (Madr) ; 51(3): 91-98, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169565

RESUMEN

BACKGROUND: MicroRNA (miR)-185-5p participates in the pathology of asthma by regulating immune imbalance, inflammation, periostin synthesis, and smooth muscle contraction. This study intended to explore the dysregulation of miR-185p and its correlation with T-helper (Th)1, Th2 cells, and inflammatory cytokines in childhood asthma. METHODS: In 150 childhood asthma patients and 30 healthy controls (HCs), miR-185-5p from peripheral blood mononuclear cells was detected using reverse transcription-quantitative polymerase chain reaction, Th cells from peripheral blood samples were detected using flow cytometry, inflammatory cytokines from serum samples were detected using enzyme-linked immunosorbent assay. RESULTS: MiR-185-5p was increased in childhood asthma patients versus HCs [median (interquartile range (IQR)): 2.315 (1.770-3.855) versus 1.005 (0.655-1.520)] (P < 0.001). Meanwhile, miR-185-5p was negatively associated with Th1 cells (P = 0.035) but positively correlated with Th2 cells (P = 0.006) and IL-4 (P = 0.003) in childhood asthma patients; however, miR-185-5p was not linked to Th1 cells, Th2 cells, IFN-γ, or IL-4 in HCs (all P > 0.05). In addition, miR-185-5p was positively related to TNF-α (P < 0.001), IL-1ß (P = 0.015), and IL-6 (P = 0.008) in childhood asthma patients, miR-185-5p was only linked to TNF-α (P = 0.040) but not IL-1ß or IL-6 (both P > 0.05) in HCs. Moreover, miR-185-5p was increased in exacerbated childhood asthma patients versus remissive patients [median (IQR): 3.170 (2.070-4.905) versus 1.900 (1.525-2.615)] (P < 0.001). Besides, miR-185-5p was highest in patients with severe exacerbation followed by patients with moderate exacerbation, and lowest in patients with mild exacerbation (P = 0.010). CONCLUSION: MiR-185-5p is associated with imbalanced Th1/Th2 cells, increased inflammatory cytokines along with elevated exacerbation risk, and severity in childhood asthma patients.


Asunto(s)
Asma , MicroARNs , Humanos , Células Th2 , Interleucina-4 , Factor de Necrosis Tumoral alfa , Leucocitos Mononucleares , Interleucina-6 , Células TH1 , Citocinas
7.
Fish Shellfish Immunol ; 138: 108801, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37164122

RESUMEN

The development of sequencing technology has further accelerated the research of noncoding RNA (ncRNA). A large number of studies have shown that long noncoding RNA (lncRNA) in ncRNA can regulate gene expression in various ways and then affect various physiological and biochemical processes of the host. In this study, we found a novel lncRNA in Miichthys miiuy, named LTCONS6801, which is beneficial to TANK-binding kinase 1 (TBK1) and its mediated pathway to promote the host immune function. First, we found that lncRNA LTCONS6801 can enhance cell activity through cell viability detection and cell proliferation detection. Besides, after poly (I: C) stimulation, overexpression of lncRNA LTCONS6801 promoted the expression of antiviral gene and TBK1. We found that lncRNA LTCONS6801 further affects NF-κB and IRF3 signaling pathways by regulating the expression of TBK1. In short, lncRNA LTCONS6801 is an lncRNA that can positively regulate the host innate immune response by regulating the expression of TBK1. Our study enriches the theory and insight of lncRNA regulating antiviral immune pathway and clarifies the important role of lncRNA in antiviral immunity of teleost fish.


Asunto(s)
Perciformes , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Antivirales , Transducción de Señal , Inmunidad Innata/genética , Perciformes/genética
8.
Allergol. immunopatol ; 51(3): 91-98, 01 mayo 2023. tab
Artículo en Inglés | IBECS | ID: ibc-219817

RESUMEN

Background: MicroRNA (miR)-185-5p participates in the pathology of asthma by regulating immune imbalance, inflammation, periostin synthesis, and smooth muscle contraction. This study intended to explore the dysregulation of miR-185p and its correlation with T-helper (Th)1, Th2 cells, and inflammatory cytokines in childhood asthma. Methods: In 150 childhood asthma patients and 30 healthy controls (HCs), miR-185-5p from peripheral blood mononuclear cells was detected using reverse transcription-quantitative polymerase chain reaction, Th cells from peripheral blood samples were detected using flow cytometry, inflammatory cytokines from serum samples were detected using enzyme-linked immunosorbent assay. Results: MiR-185-5p was increased in childhood asthma patients versus HCs [median (interquartile range (IQR)): 2.315 (1.770–3.855) versus 1.005 (0.655–1.520)] (P < 0.001). Meanwhile, miR-185-5p was negatively associated with Th1 cells (P = 0.035) but positively correlated with Th2 cells (P = 0.006) and IL-4 (P = 0.003) in childhood asthma patients; however, miR-185-5p was not linked to Th1 cells, Th2 cells, IFN-γ, or IL-4 in HCs (all P > 0.05). In addition, miR-185-5p was positively related to TNF-α (P < 0.001), IL-1β (P = 0.015), and IL-6 (P = 0.008) in childhood asthma patients, miR-185-5p was only linked to TNF-α (P = 0.040) but not IL-1β or IL-6 (both P > 0.05) in HCs. Moreover, miR-185-5p was increased in exacerbated childhood asthma patients versus remissive patients [median (IQR): 3.170 (2.070–4.905) versus 1.900 (1.525–2.615)] (P < 0.001). Besides, miR-185-5p was highest in patients with severe exacerbation followed by patients with moderate exacerbation, and lowest in patients with mild exacerbation (P = 0.010). Conclusion: MiR-185-5p is associated with imbalanced Th1/Th2 cells, increased inflammatory cytokines along with elevated exacerbation risk, and severity in childhood asthma patients (AU)


Asunto(s)
Humanos , Células Th2/metabolismo , Células TH1/metabolismo , Inflamación/metabolismo , Citocinas/biosíntesis , Asma/metabolismo , Estudios de Casos y Controles , Factores de Riesgo
9.
Plant Sci ; 330: 111667, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36858208

RESUMEN

Male and female gametophyte development processes are essential steps in the life cycles of all land plants. Here, we characterized a gene, FviBAG6-A, screened from the Fragaria viridis (2 n = 2x=14) pollen cDNA library and physically interacted with S-RNase. Ubiquitinated of Sa-RNase might be determined by the interaction of FviBAG6-A in the ubiquitin-proteasome system during fertilization. We found that overexpression of FviBAG6-A in Arabidopsis caused shorter silique length, and decreased silique number. Moreover, overexpression of FviBAG6-A in Fragaria vesca (2 n = 2x=14) led to a greatly reduced seed number, with nearly 80% of the seeds aborted. Analyses of paraffin sections and reactive oxygen species (ROS) content revealed that the majority of severe pollen defects were likely due to the early degradation of the tapetum and middle layer as a result of ROS accumulation and abnormal development of the uninucleate megaspore mother. Moreover, the FviBAG6-A interact with the E3 ligase SIZ1 and contribute to the SUMOylation of FviBAG6-A , which may be induced by the high level of ROS content, further promoting gametophyte abortion in strawberry transgenic lines. This study characterized the FviBAG6-A and reveals its novel function in gametophyte development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Proteínas de Arabidopsis/metabolismo , Fragaria/genética , Fragaria/metabolismo , Células Germinativas de las Plantas/metabolismo , Diploidia , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Polen/genética , Polen/metabolismo , Ribonucleasas/metabolismo , Ligasas/genética , Proteínas Nucleares/metabolismo , Chaperonas Moleculares/genética
10.
Plant Dis ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548921

RESUMEN

Strawberry (Fragaria×ananassa Duch.) is an important economic fruit crop in the world. With the continuous expansion of strawberry planting area, strawberry disease is one of the most important limiting factors, which seriously affects the agronomic performance and leads to significant economic losses. In November 2020, an infected stem rot disease of strawberries was detected in the strawberry growing area of Donghai County, Jiangsu Province, China. The disease incidence ranged from 30 % to 45 %. Initially, infected plants included stunted growth of new leaves, leaflet asymmetry, and holes in the vertical section of the stem, resulting in leaf blight and death in severe cases. To isolate the pathogen, two symptomatic plants were randomly collected. And then infected plants were surface sterilized with 75 % ethanol for 1 min, followed by 2 % sodium hypochlorite for 6 minutes. After that, the infected plants were washed 4-5 times with double sterilized distilled water, cut into 3-5 mm small pieces, and soaked in 2 ml of sterile water for 15 min, after which 100 µl of liquid suspension were spread onto Luria-Bertani medium (LB) and incubated at 28 °C for 12-16 h. All isolates showed yellow, viscous, round, and smooth (Figure S1, C) and the isolates were designated as JX1 and JX2. To identify the pathogen, the genomic DNA were extracted from isolates using the Ezup Column Bacteria Genomic DNA Purification Kit (Sangon Biotech, China) and the fragments of gyrB, rpoB and leuS gene were amplified using the primer pairs UP-1S/UP-2Sr (Yamamoto and Harayama 1995), rpoB-F/rpoB-R and leuS-F/leuS-R (Yu et al. 2022), respectively. Sequence analyses showed that the nucleotide sequences of gyrB, rpoB, and leuS fragments of the isolates shared 99.72 %, 99.67 % and 98.37 % identity with the Pantoea ananatis type strain LMG 2665 (KF482590.1, EF988972.1 and KF482626.1, respectively ), which suggests that the isolate could be Pantoea ananatis. To further verify that P. ananatis was identity of these isolates, the whole genome was sequenced using PacBio sequel II technology. The Average Nucleotide Identity (ANI) calculation showed that the whole-genome sequence was 99.0% similar to that of the Pantoea ananatis type strain LMG 2665 (Jain et al. 2018). The isolates were therefore recognized as P. ananatis. To confirm pathogenicity, roots of strawberry plants were inoculated by wounding as described (Wang et al. 2017) with bacterial suspensions (108 CFU/ml) for 30 min, and transplanted into 10 cm ×8.5 cm pots filled with substrate (peat: perlite: vermiculite =3:1:1). The negative control plants were inoculated with sterile distilled water (20 individual plants per group). All infected plants were placed in a greenhouse under the following environmental conditions: 30 ℃/25 ℃ day/night, >70 % relative humidity, 16-h/8-h photoperiod. The experiment was carried out three times. After 3 to 4 weeks of inoculation, the new leaves of the plants were smaller and asymmetrical, while the negative plants remained healthy. After 8 weeks, a significant stem rot pocket developed on all inoculated plants, similar to the symptoms observed in the field. In contrast, no symptoms were observed in negative plants (Figure S2). To fulfill Koch's postulates bacteria were further isolated, purified and identified from the greenhouse inoculated plants. The results proved that the causative agent of strawberry stem rot was P. ananatis. In recent decades, P. ananatis has been found to cause bacterial leaf blight in strawberries (Bajpai et al. 2020). It has also caused other crop diseases, such as maize white spot, peach soft rot and others (Cui et al.2022; Liao et al. 2015). Although other crop diseases caused by P. ananatis, a bacterial pathogen, there has been no report of P. ananatis causing the symptoms of stem rot disease in strawberry. To our knowledge, this is the first report of P. ananatis causing stem rot in strawberry. This study provides solid evidence that strawberry stem rot disease in China can also be caused by the novel pathogen Pantoea ananatis. In conclusion, this report will provide a theoretical reference for the prevention and control measures of P. ananatis causing strawberry stem rot disease in the future.

11.
Front Pharmacol ; 13: 952560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081941

RESUMEN

Osteoarthritis is a chronic and irreversible disease of the locomotor system which is closely associated with advancing age. Pain and limited mobility frequently affect the quality of life in middle-aged and older adults. With a global population of more than 350 million, osteoarthritis is becoming a health threat alongside cancer and cardiovascular disease. It is challenging to find effective treatments to promote cartilage repair and slow down disease progression. Metformin is the first-line drug for patients with type 2 diabetes, and current perspectives suggest that it cannot only lower glucose but also has anti-inflammatory and anti-aging properties. Experimental studies applying metformin for the treatment of osteoarthritis have received much attention in recent years. In our review, we first presented the history of metformin and the current status of osteoarthritis, followed by a brief review of the mechanism that metformin acts, involving AMPK-dependent and non-dependent pathways. Moreover, we concluded that metformin may be beneficial in the treatment of osteoarthritis by inhibiting inflammation, modulating autophagy, antagonizing oxidative stress, and reducing pain levels. Finally, we analyzed the relevant evidence from animal and human studies. The potential of metformin for the treatment of osteoarthritis deserves to be further explored.

12.
J Neuroinflammation ; 19(1): 219, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068571

RESUMEN

Since the twenty-first century, the development of technological advances in anesthesia and surgery has brought benefits to human health. However, the adverse neurological effects of perioperative-related factors (e.g., surgical trauma, anesthesia, etc.) as stressors cannot be ignored as well. The nervous system appears to be more "fragile" and vulnerable to damage in developing and aging individuals. Ferroptosis is a novel form of programmed cell death proposed in 2012. In recent years, the regulation of ferroptosis to treat cancer, immune system disorders, and neurodegenerative diseases have seen an unprecedented surge of interest. The association of ferroptosis with perioperative neurocognitive disorders has also received much attention. Cognitive impairment can not only affect the individual's quality of life, but also impose a burden on the family and society. Therefore, the search for effective preventive and therapeutic methods to alleviate cognitive impairment caused by perioperative-related factors is a challenge that needs to be urgently addressed. In our review, we first briefly describe the connection between iron accumulation in neurons and impairment of brain function during development and aging. It is followed by a review of the pathways of ferroptosis, mainly including iron metabolism, amino acid metabolism, and lipid metabolism pathway. Furthermore, we analyze the connection between ferroptosis and perioperative-related factors. The surgery itself, general anesthetic drugs, and many other relevant factors in the perioperative period may affect neuronal iron homeostasis. Finally, we summarize the experimental evidence for ameliorating developmental and degenerative neurotoxicity by modulating ferroptosis. The suppression of ferroptosis seems to provide the possibility to prevent and improve perioperative neurocognitive impairment.


Asunto(s)
Disfunción Cognitiva , Ferroptosis , Apoptosis , Humanos , Hierro/metabolismo , Calidad de Vida
13.
Front Public Health ; 10: 890652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844855

RESUMEN

Objective: With an aging population and advances in medicine, more research focuses on health and longevity in geriatric adults. Recently, frailty has gradually emerged to assess physical conditions. Frailty can be generally described as a multi-dimensional situation of increased vulnerabilities to both endogenous and exogenous stressors. The objective of the review was to evaluate the predictive value of frailty on adverse outcomes in geriatric hip fracture patients. Materials and Methods: We searched PubMed, Embase, Web of Science, and the Cochrane library for relevant literature about the connection between frailty and poor outcomes in hip fracture elders. Results: Eleven studies involving a total of 45,979 participants were selected in our study. Our results indicated that frailty could significantly predict postoperative and in-patient complications (OR, 1.46; 95% CI, 1.13-1.90; I2 = 77.4%). Frail elders had higher risk of inpatient mortality (OR, 1.68; 95% CI, 1.26-2.25; I2 = 0.0%), 6-month mortality (OR, 1.46; 95% CI, 1.25-1.72; I2 = 0.0%) and ≥1-year mortality (OR, 2.24; 95% CI, 1.66-3.04; I2 = 91.3%). Furthermore, the risk of prolonged hospital stays was 1.15 times more likely in frail patients (95% CI, 1.03-1.28; I2 = 14.8%). Conclusion: Frailty can predict adverse outcomes effectively in geriatric hip fracture patients. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails.


Asunto(s)
Fragilidad , Anciano , Anciano Frágil , Fragilidad/epidemiología , Evaluación Geriátrica/métodos , Humanos , Tiempo de Internación
14.
Front Pharmacol ; 13: 865524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392559

RESUMEN

Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind's desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.

15.
Org Lett ; 24(9): 1807-1811, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35234038

RESUMEN

A nickel-catalyzed enantioconvergent reductive cross-coupling of α-chlorosulfones with vinyl bromides is described here. This strategy enables the enantioselective construction of chiral allylic sulfones from simple α-chlorosulfones and vinyl bromides. The mild reaction conditions lead to excellent functional group compatibility, as evidenced by the broad substrate scope and tolerance of complex bioactive molecules. Our preliminary mechanistic study suggests that this enantioselective vinylation process operates through a radical intermediate.


Asunto(s)
Bromuros , Níquel , Catálisis , Níquel/química , Estereoisomerismo
16.
Front Plant Sci ; 13: 1065218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36874917

RESUMEN

The genus Fragaria consists of a rich diversity of ploidy levels with diploid (2x), tetraploid (4x), pentaploid (5x), hexaploidy (6x), octoploid (8x) and decaploid (10x) species. Only a few studies have explored the origin of diploid and octoploid strawberry, and little is known about the roles of tetraploidy and hexaploidy during the evolution of octoploid strawberry. The chloroplast genome is usually a stable circular genome and is widely used in investigating the evolution and matrilineal identification. Here, we assembled the chloroplast genomes of F. x ananassa cv. 'Benihoppe' (8x) using Illumina and HiFi data seperately. The genome alignment results showed that more InDels were located in the chloroplast genomes based on the PacBio HiFi data than Illumina data. We obtain highly accurate chloroplast genomes assembled through GetOrganelle using Illumina reads. We assembled 200 chloroplast genomes including 198 Fragaria (21 species) and 2 Potentilla samples. Analyses of sequence variation, phylogenetic and PCA analyses showed that Fragaria was divided into five groups. F. iinumae, F. nilgerrensis and all octoploid accessions formed Group A, C and E separately. Species native to western China were clustered into Group B. Group D consisted of F. virdis, F. orientalis, F. moschata, and F. vesca. STRUCTURE and haplotype network confirmed that the diploid F. vesca subsp. bracteata was the last maternal donator of octoploid strawberry. The dN/dS ratio estimated for the protein-coding genes revealed that genes involved in ATP synthase and photosystem function were under positive selection. These findings demonstrate the phylogeny of totally 21 Fragaria species and the origin of octoploid species. F. vesca was the last female donator of octoploid, which confirms the hypothesis that the hexaploid species F. moschata may be an evolutionary intermediate between the diploids and wild octoploid species.

17.
Rev Neurosci ; 33(4): 427-438, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-34757706

RESUMEN

Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Humanos , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal , Sirtuina 1/metabolismo
18.
Plant J ; 108(6): 1704-1720, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634158

RESUMEN

Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.


Asunto(s)
Endospermo/crecimiento & desarrollo , Proteínas de Almacenamiento de Semillas/genética , Factores de Transcripción/genética , Triticum/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genoma de Planta , Regiones Promotoras Genéticas , Triticum/crecimiento & desarrollo
19.
Org Lett ; 23(19): 7418-7422, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34542298

RESUMEN

A Ni-catalyzed reductive cross-coupling between α-C-tosyl peptides and Csp2 triflates/halides has been developed. This protocol enables the formation of various unnatural di- and tripeptides containing vinyl and aryl side chains, and it expands the applications of Ni-catalyzed reductive cross-coupling in late-stage diversification of peptides.

20.
Plant Biotechnol J ; 19(9): 1863-1877, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33949074

RESUMEN

Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.


Asunto(s)
Factores de Transcripción , Triticum , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...